
Cleaning, Validating and Enhancing the SQL
Server Data Warehouse Contact Dimension

Problem:

Contact data is acquired from a variety of sources.
You may collect contacts at trade shows or from
your web site. You may purchase lists of contacts. In
many cases the contact data may be incomplete and
not in a standardized format. Cleaning, validating
and standardizing the contact data is definitely a
challenge.

In a SQL Server Data Warehouse, the Contact
dimension may include existing customers as well
as prospects. The goal of the Contact dimension is
to have clean, valid and up-to-date data which can
be used to communicate with contacts via email,
mail and phone, as well as perform analysis on the
contacts based on demographics. Unfortunately,
the built-in SSIS components do not provide the
kind of data cleansing, validating and enhancing of
demographic data that you need. SSIS does provide
the ability for you to create script components using
.NET code to do these kinds of tasks.

How can we clean, validate and enhance our Contact
dimension without writing code?

Solution:

Melissa has a variety of tools available to clean,
validate and enhance the Contact dimension in your
SQL Server data warehouse. Specifically, Melissa’s
suite of SSIS Data Quality Components can be
leveraged for this task. The Melissa SSIS components
are plug and play; you simply drag and drop the
components onto the Data Flow, configure the
component properties, and you are ready to go.
There is no coding required.

The Melissa SSIS components provide a wealth of
capabilities including:

• SQL Server Data Import Options

• Poor Data Quality in Business is Expensive

• Correcting SQL Server Duplicates

• Resolving Out-of-Date SQL Server Data

• SQL Server Data Verification

APPLICATION NOTE

https://www.melissa.com/
http://wiki.melissadata.com/index.php?title=SSIS%3AData_Quality_Components

2

The following are the main points about the SSIS
package:

• This is an example of a “master” package where
each task is an Execute Package Task

• Contacts are received in a comma-separated
values (CSV) file

• The IMPORT CONTACT CSV task inserts the
records from the CSV file into a SQL Server table

• The CLEAN, VALIDATE AND ENHANCE task
uses the Melissa Personator SSIS component to
prepare the Contacts for loading into the Contact
dimension

• The CHECK FOR DUPLICATE CONTACTS task
uses the Melissa Fuzzy Match SSIS component
to determine which Contacts already exist in the
Contact dimension and which Contacts are new

• The UPDATE CONTACT DIMENSION task
performs the inserts and updates for the Contact
dimension

I will focus on the CLEAN, VALIDATE AND
ENHANCE and CHECK FOR DUPLICATE CONTACTS
tasks as these are the ones that use the Melissa
SSIS components. I will touch on the UPDATE
CONTACT DIMENSION task; this is just an Execute
SQL task that inserts or updates rows in the Contact
dimension.

Before drilling into the details of these tasks, I want
to briefly discuss the Melissa SSIS components.

Demo Solution

To set the stage, I will introduce the demo
solution that I will use to show the Melissa SSIS
components in action. The following is a simplified
data warehouse; I will only focus on inserting and
updating the Contact dimension.

The following are the main points for this
hypothetical data warehouse:

• This is a simple star schema

• The CALENDAR table is a basic time dimension

• The CAMPAIGN table is a dimension that defines
specific marketing campaigns

• The CAMPAIGN_ACTIVITY table is the fact table
that tracks emails and letters sent to contacts for
specific marketing campaigns

• Ultimately, I want to measure the effectiveness
of the communications for each marketing
campaign

I will use the following SSIS package to insert and
update Contacts:

3

Melissa SSIS Components

The Melissa SSIS components are placed in the
SSIS Data Flow. They accept input from any SSIS
data source and they output results to any SSIS
data destination. The components have very
robust configuration capabilities. You can select the
capabilities that you need and fine tune the many
options available, as you will see in the later sections.
You can save your configuration for use in other SSIS
packages.

Personator

The Personator SSIS component provides cleaning,
validating and enhancing of Contacts. It works on
names, addresses, emails and phone numbers.
Cleaning involves processes like standardizing
upper/lower case, parsing and formatting. Validating
involves checking; e.g. is the address deliverable?
Enhancing provides all sorts of demographic data
based on the address; e.g. latitude and longitude.
Personator can parse full names and full addresses
into their individual fields. Where address information
is missing, Personator can provide it. For instance, if
you have an address line and a ZIP Code, Personator
can provide the city and state.

The main point about Personator is that it has
domain-specific knowledge of Contact data. It
leverages reference data to properly parse names
and addresses.

Fuzzy Match

The Fuzzy Match SSIS component can determine
whether Contacts are in fact new or already exist in
the Contact dimension. It provides a large toolbox of
state-of-the-art fuzzy matching algorithms that can
be configured with each field comparison. Based on
a calculated percentage match, the component can
direct Contact inputs to Match, Possible Match and
Non-Match outputs. This makes inserting or updating
the Contact dimension very straight-forward.

Sample Input File

The following is the sample input file that I will use for
the demo:

The sample file has some typical anomalies that we
find in Contact data:

• The name should be in standard format with
upper and lower case

• The address is an apartment building; the
apartment number is missing

• The first name and last name are flipped; the city
is missing

• The city and state are missing; this individual has
two middle names

• The address is an office building; a suite number is
required to deliver to the address

• The address is an office building; the suite number
is there but the Ste abbreviation is missing

• How would you parse the address and city? The
Personator SSIS component has the knowledge to
do it

• Some people intentionally provide incorrect
information

In the sections that follow, I will walk through the
details of how the Personator SSIS component
properly parses and corrects names and addresses.
I will also walk through how the Fuzzy Match SSIS
component determines duplicate Contacts.

4

CLEAN, VALIDATE AND ENHANCE Task

The following is the Data Flow for the CLEAN,
VALIDATE AND ENHANCE task:

The following are the main points about the above
Data Flow:

• Import CONTACT retrieves the Contact data to
be processed from the SQL Server table import.
CONTACT

• Multicast directs the Contact rows to the Melissa
Personator SSIS components (NAME AND
ADDRESS and EMAIL AND PHONE)

• NAME AND ADDRESS and EMAIL AND PHONE
are instances of the Personator component that
clean, validate and enhance the Contact data

• Stage CONTACT_NAME_AND_ADDRESS and
stage EMAIL_AND_PHONE are SQL Server
tables that store the output from the Melissa
Personator components

In the next section, I will walk through the details to
configure the Personator SSIS component. After that,
I will review the results from executing the CLEAN,
VALIDATE AND ENHANCE task.

Personator Configuration

The Personator SSIS component has very robust
configuration capabilities. There are many options
available. To start off, the following options are
available from the File menu for saving and reusing
your configuration:

I will walk through the following tabs and discuss
how it works:

• Input

• Output

• Pass-Through Columns

• Output Filter

5

Input

The Input tab is used to map the fields in your
Contact input to the pre-defined fields in the
Personator component. It is shown below:

Output

The Output tab allows you to specify which of the
available fields from the Personator component that
you want to retrieve. It is shown below:

The following are the main points for the Output tab:

• There are many fields available in the Output
Groups/Columns list box; you simply check the
ones you want

• I am selecting from the Name Details fields
which are parsed from the FULL_NAME_AND_
ADDRESS input field

• Gender and Salutation are examples of the
additional demographic data that is available

• Personator is able to parse two names; for my
demo, I am only specifying one name

• The Geocode Details are another example of
additional data available; based on the address,
you can retrieve the Latitude and Longitude

The following are the main points for the Input tab:

• Map whatever fields you have in your input to the
pre-defined ones

• In my case, I want to parse the name and address
from a single field so I check Apply Free Form
Input and map the FULL_NAME_AND_ADDRESS
field to the Free Form field

• When you choose Apply Free Form Input, the rest
of the fields are disabled

6

Pass-Through Columns

The Pass-Through Columns allow you to specify which
of the fields in your input you want to include in the
output from Personator. It is shown below:

The following are the main points for the Output tab:

• The CONTACT_KEY is the primary key for the
import.CONTACT table; when inserting or
updating the Contact dimension, I want to include
the CONTACT_KEY in order to identify the source
of the Contact data

• I want to include the FULL_NAME_AND_
ADDRESS in the output so I can compare it to the
output from the Personator component

• The IMPORT_FILE_KEY is the primary key for a
table that has a single row for each CSV file that
I import

Output Filter

The Output Filter tab is the final tab in the Personator
component configuration and has the options for the
output you want from the component. It is shown
below:

The following are the main points for the
Output Filter tab:

• The Personator component reports one or more
“Result Codes” for each input record that it
processes. The result codes provide the details on
success or failure, and many other conditions.
I will review the Result Codes in later sections

• Take a look at Result Codes for the details

• The Personator component has 4 outputs
available to direct the Contact rows based on
conditions; you can choose from the Pre-Built
Filter or create your own Custom Filter Expression

• By default, all Contact rows will be directed to
Output 1 unless you specify a filter

• In my demo, I went with the default

7

The Pre-Built Filter options are shown below:

When you select Custom… from the Pre-Built Filter,
the Custom Filter Expression options are available
and are shown below:

Next, I will review the results from executing the
CLEAN, VALIDATE AND ENHANCE task.

CLEAN, VALIDATE AND ENHANCE Results

The CLEAN, VALIDATE AND ENHANCE task calls
on the Personator component to clean, validate
and enhance the Contact input. The Personator
component outputs the results to the stage
CONTACT_NAME_AND_ADDRESS and stage
EMAIL_AND_PHONE SQL Server tables. The last
step in the Data Flow is to combine the CONTACT_
NAME_AND_ADDRESS and EMAIL_AND_PHONE
tables into the stage FULL_CONTACT table.

I will review the following:

• Full Name results

• Full Address results

• Email and Phone results

• Combine tables

8

The following are the main points:

• The address is an apartment building; AE09
means the apartment number is missing

• The city is missing; AC03 means the city or
municipality name was added or changed

• The city and state are missing; AC02 means the
state or province was added or changed

• The address is an office building; AE09 means the
suite is missing

• The address and city are properly parsed;
Personator uses reference data to get the cities
within the state and the streets within the cities

• Latitude is an example of additional data available

The AS01 result code means the address is valid and
deliverable according to official postal agencies.

Phone and Email Results

The following shows the results for the email
and phone:

The following are the main points:

• The MD_Results column provides the details from
the Personator component; it includes a comma-
separated list of result codes for the name and
address

• The full name gets parsed into the individual
columns; salutation is an example of the additional
data that is available

• NS01 tells us that name parsing was successful

• NS05 confirms that the FirstName was found in
the census table of names and it is very likely to
be a real first name

• NS06 confirms that the LastName was found in
the census table of names and it is very likely to
be a real last name

Full Address Results

The following shows the results for the full addresses:

9

The following are the main points:

• The rows from the CONTACT_NAME_AND_
ADDRESS and EMAIL_AND_PHONE tables are
joined by the CONTACT_KEY column

• The rows are filtered by the WHERE clause
so that only rows that have a successful name
parse, a valid address and a valid email are
inserted into the FULL_CONTACT table; this is
a very conservative approach but I wanted to
demonstrate how to only load good Contacts

CHECK FOR DUPLICATES Task

Now that we have cleaned, validated and enhanced
our Contacts and loaded them to the FULL_
CONTACT table, we need to check for duplicates.
We do not want to add any Contact that is already
in the Contact dimension. I will use the Fuzzy Match
component to perform the duplicate check.

The following is the Data Flow with the Fuzzy Match
component:

There are quite a few different result codes.
The following are a sample of result codes and
descriptions:

• ES01 is confirmed to be a valid email

• ES02 is confirmed to be an invalid email

• ES07 is an accept all server; every email is
reported to be valid

• EE01 is a syntax error in the email address

• EE04 is an invalid mailbox

• PS01 is a valid phone

• PS08 was designated as a land line when activated

• PS11 is a business number

The level of detail in the email and phone result codes
is really impressive.

Combine Tables

The final step in the CLEAN, VALIDATE AND
ENHANCE task is to combine the CONTACT_NAME_
AND_ADDRESS and EMAIL_AND_PHONE tables into
the stage FULL_CONTACT table. There is no visual
for this one; it is just an Execute SQL task.

The following is an abbreviated listing of the T-SQL:

10

The following are the main points:

• The Fuzzy Match component take two inputs;
they are referred to as the source and compare

• The source is the FULL_CONTACT table which has
the Contacts that have just been run through the
Personator component

• The compare is the existing Contact dimension

• The Fuzzy Match component compares every row
in the source with every row in the compare

• Based on the component configuration (I will walk
through that next) the Fuzzy Match directs rows
to the three outputs shown above

• Each output is a SQL Server table in my example

• Stage NEW_CONTACT has the combination of
source and compare rows that do not match;
these are new Contacts

• Stage NOTSURE_CONTACT has the rows where
the component is not sure whether the Contact
matches or does not match an existing row in the
Contact dimension

• Stage UPDATE_CONTACT has the rows where
the Contact matches a row in the Contact
dimension

I will walk through the configuration of the following
tabs in the Fuzzy Match component:

• Matches

• Advanced Options

• Source-Pass Through Columns

• Compare Pass-Through Columns

The following are the main points for the Matches tab:

• Select the fields to compare from the source
(FULL_CONTACT table) and compare (Contact
dimension)

• Select a Match Type for each comparison; choose
from the available Fuzzy Match algorithms as
shown above

• I am using the same algorithm for each; you are
free to select different ones if you like

• Specify the Upper and Lower confidence values; I
went with the defaults

• Check WS to ignore whitespace in the comparison

Advanced Options Tab

The following is the Advanced Options tab:

Matches Tab

The following is the Matches tab:

11

The following are the main points for the Source Pass-
Through Columns tab:

• Select the columns from the source (FULL_
CONTACT) to include in the output

• I chose the CONTACT_KEY so that I can insert or
update the Contact dimension with this value and
be able to trace any row in the Contact dimension
back to the input

The following are the main points for the Advanced
Options tab:

• The Output Match Percentage column will have
the overall calculated match percentage for all of
the specified comparisons (on the Matches tab); it
will appear in every output row

• I chose Match if every comparison meets its
threshold for the Threshold Logic; this is the most
conservative approach; there are other options
available

• The Match Percentage column will have the
match percentage for each comparison; it will also
appear in every output row

• The Source Columns Contents and Compare
Column Contents send the value of the
comparison columns to the output

Source Pass-Through Columns Tab

The following is the Source Pass-Through
Columns tab:

The following are the main points for the Compare
Pass-Through Columns tab:

• Select the columns from the compare (Contact
dimension) to include in the output

• I chose the CONTACK_SK which is the primary
key in the Contact dimension; I use this to update
the Contact dimension when a row matches an
existing row in the Contact dimension

Next, I will review the results from executing the
CHECK FOR DUPLICATES task.

Compare Pass-Through Columns Tab

The following is the Compare Pass-Through
Columns tab:

12

Remember I mentioned earlier that the Fuzzy Match
component compares every row in the source with
every row in the compare. In my simplified example,
this means that every valid Contact in the source
will be a match for one row in the compare (i.e. the
Contact dimension) but it will NOT match every
other row in the Contact dimension. So, we will have
matching rows in the UPDATE_CONTACT table
but those same Contacts will appear in the NEW_
CONTACT table because they do not match any
other row in the Contact dimension.

The following shows the rows in the UPDATE_
CONTACT table after running the sample SSIS
package a second time:

The following are the main points for the results:

• The mdMatchPercentage for every row is 100%;
this is expected since I ran the same input a
second time

• Each row in the input is an exact match to one of
the rows in the Contact dimension

Next, I will review the T-SQL in the UPDATE
CONTACT DIMENSION task.

CHECK FOR DUPLICATES Results

To review the results from the CHECK FOR
DUPLICATES task, I will show the partial contents
of the NEW_CONTACT and UPDATE_CONTACT
SQL Server tables. Based on my sample data, the
NOTSURE_CONTACT table is empty. The UPDATE_
CONTACT table is also empty but only on the initial
run.

The following are the partial results in the NEW_
CONTACT table from the initial run of the CHECK
FOR DUPLICATES task:

The following are the main points for the results:

• I started out with one row in the Contact
dimension to highlight the fact that the Fuzzy
Match component matches every row in the
source with every row in the compare

• There were only four rows that were valid in the
source; each source row gets compared with
the one row in the Contact dimension as shown
above

• The mdMatchPercentage is the overall match
percentage for the three comparisons

• Based on the mdMatchPercentage, no row in the
source matches a row in the compare so all rows
are new Contacts

The final step in the sample SSIS package is the
UPDATE CONTACT DIMENSION task. This is simply
an Execute SQL task that inserts new Contacts
in the Contact dimension and updates matching
Contacts in the Contact dimension. Before reviewing
the T-SQL in the UPDATE CONTACT DIMENSION
task, I’m going to execute the entire SSIS package
a second time. This second run will determine that
every valid Contact matches an existing row in the
Contact dimension.

13

UPDATE CONTACT DIMENSION Task

This task inserts new Contacts into the Contact
dimension and updates matching Contacts in the
Contact dimension. For context, assume we are
talking about the second run of the sample SSIS
package where every Contact matches an existing
row in the Contact dimension.

I have a stored procedure named UPSERT_CONTACT
to implement this logic. The abbreviated INSERT
T-SQL is shown below:

The following are the main points for the above
T-SQL:

• I use a common table expression to get the rows
from the FULL_CONTACT table that have a 100%
match percentage in the UPDATE_CONTACT
table

• I update the CONTACT dimension by joining
to the common table expression results on
CONTACT_SK

• CONTACT_SK is the primary key value in the
Contact dimension

• CONTACT_SK is in the UPDATE_CONTACT table
because I specified it in the output pass-through
columns in the Fuzzy Match component

The last thing to look at are the results from
executing the UPDATE CONTACT DIMENSION task.

The following are the main points for the above
T-SQL:

• I use a common table expression to get the list
of CONTACT_KEY values to be inserted into the
Contact dimension

• I get the DISTINCT list of CONTACT_KEY values
from the NEW_CONTACT table; remember
every Contact in the source is compared to every
Contact in the compare so each CONTACT_KEY
value will occur in as many rows as there are rows
in the Contact dimension that it does NOT match

• I get the list of CONTACT_KEY values from the
UPDATE_CONTACT table; these are the source
rows that match a row in the compare table; i.e.
these are the matching Contacts

• I use EXCEPT to remove each matching
CONTACT_KEY value from the DISTINCT list of
CONTACT_KEY values from the NEW_CONTACT
table that is also in the UPDATE_CONTACT table

• I select every row from the FULL_CONTACT table
that matches a CONTACT_KEY value from the
common table expression and INSERT it into the
Contact dimension

• CONTACT_KEY is in the NEW_CONTACT table
because I specified it in the output pass-through
columns in the Fuzzy Match component

I can tell you that it took a little bit of testing to
figure this one out.

The abbreviated UPDATE T-SQL is shown below:

14

UPDATE CONTACT DIMENSION Results

The following is the list of rows in the Contact
dimension (partial list of columns):

Next Steps

• To experiment with the demo code, you can
download the SSIS Solution here.

• Check out other Melissa content on
MSSQLTips.com in the links below

 • Improve Data Quality for SQL Server
 Reporting

 • Survival of the Fittest: Melissa’s Matching
 Approaches for Golden Record Management

 • Powerful SQL Server Data Cleansing
 and Processing

 • Fundamentals of SQL Server Data Cleansing

 • Improving Data Quality with SQL Server
 Integration Services

 • Global Address Data Quality - Storage,
 Correction, and Verification

 • Make the most of SQL Server Integration
 Services Script Components

The following are the main points for the results:

• The SOURCE_KEY is the CONTACT_KEY from
the input

• The initial value of the SOURCE_KEY is the
CONTACT_KEY value from the input row that
was inserted into the Contact dimension

• When a row in the Contact dimension is
updated, the SOURCE_KEY value changes to the
CONTACT_KEY value from the input row that
updated the Contact dimension

Summary

I hope that I have presented a compelling option
for cleaning, validating and enhancing your Contact
data. I think the biggest takeaway is that you
really want a solution that includes domain-specific
knowledge of Contact data, yet is easy to implement
in SQL Server Integration Services (SSIS) packages
and does not require writing any code.

https://www.mssqltips.com/tipImages2/6244_SSIS-Solution.zip
https://www.mssqltips.com/sqlservertip/6127/improve-data-quality-for-sql-server-reporting/
https://www.mssqltips.com/sqlservertip/6127/improve-data-quality-for-sql-server-reporting/
https://www.mssqltips.com/sql-server-video/792/survival-of-the-fittest-melissas-matching-approaches-for-golden/
https://www.mssqltips.com/sql-server-video/792/survival-of-the-fittest-melissas-matching-approaches-for-golden/
https://www.mssqltips.com/sqlservertip/5978/powerful-sql-server-data-cleansing-and-processing/
https://www.mssqltips.com/sqlservertip/5978/powerful-sql-server-data-cleansing-and-processing/
https://www.mssqltips.com/sql-server-video/220/sql-server-data-cleansing-video-with-ssis/
https://www.mssqltips.com/sql-server-video/771/improving-data-quality-with-sql-server-integration-services/
https://www.mssqltips.com/sql-server-video/771/improving-data-quality-with-sql-server-integration-services/
https://www.mssqltips.com/sql-server-video/647/global-address-data-quality-storage-correction-verification/
https://www.mssqltips.com/sql-server-video/647/global-address-data-quality-storage-correction-verification/
https://www.mssqltips.com/sql-server-video/730/sql-server-integration-services-script-components/
https://www.mssqltips.com/sql-server-video/730/sql-server-integration-services-script-components/

15

ABOUT MELISSA

Melissa is a leading provider of data quality, identity verification and address management
solutions. Melissa helps businesses win and retain customers, validate and correct contact
details, optimize their marketing ROI and manage risk. Since 1985, Melissa has been a
trusted partner for key industries like retail, education, healthcare, insurance, finance, and
government. For more information, visit www.melissa.com or call 1-800-Melissa.

About MSSQLTips.com

MSSQLTips.com is a free community dedicated to SQL Server. Since 2006 our team has
delivered value to millions of SQL Server DBAs, Developers and Business Intelligence
Professionals on a daily basis. MSSQLTips.com helps solve real world problems and improve
your SQL Server knowledge with free tips, tutorials, web casts, videos and more. The
MSSQLTips.com team is comprised of 150+ expert authors led by Greg Robidoux and
Jeremy Kadlec. We are focused on sharing knowledge and improving the global SQL Server
community every second of the day.

Licensed with Permission to Melissa from Edgewood Solutions, LLC.

Copyright (c) 2006-2020 Edgewood Solutions, LLC All rights reserved

About the author

Ray Barley is a Principal Architect at IT Resource Partners and a MSSQLTips.com
BI Expert.

Original Source - https://www.mssqltips.com/sqlservertip/6244/microsoft-sql-server-
data-warehouse-data-quality-cleansing-verification-and-matching/

https://www.melissa.com/
https://www.mssqltips.com/sql-server-mssqltips-authors/
https://www.mssqltips.com/sqlserverauthor/37/greg-robidoux/
https://www.mssqltips.com/sqlserverauthor/38/jeremy-kadlec/
https://www.edgewoodsolutions.com/
https://www.mssqltips.com/sqlservertip/6244/microsoft-sql-server-data-warehouse-data-quality-cleansing-verification-and-matching/
https://www.mssqltips.com/sqlservertip/6244/microsoft-sql-server-data-warehouse-data-quality-cleansing-verification-and-matching/

